Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Cells ; 11(12)2022 06 07.
Article in English | MEDLINE | ID: covidwho-1884015

ABSTRACT

People with pre-existing lung diseases such as chronic obstructive pulmonary disease (COPD) are more likely to get very sick from SARS-CoV-2 disease 2019 (COVID-19). Still, an interrogation of the immune response to COVID-19 infection, spatially throughout the lung structure, is lacking in patients with COPD. For this study, we characterized the immune microenvironment of the lung parenchyma, airways, and vessels of never- and ever-smokers with or without COPD, all of whom died of COVID-19, using spatial transcriptomic and proteomic profiling. The parenchyma, airways, and vessels of COPD patients, compared to control lungs had (1) significant enrichment for lung-resident CD45RO+ memory CD4+ T cells; (2) downregulation of genes associated with T cell antigen priming and memory T cell differentiation; and (3) higher expression of proteins associated with SARS-CoV-2 entry and primary receptor ubiquitously across the ROIs and in particular the lung parenchyma, despite similar SARS-CoV-2 structural gene expression levels. In conclusion, the lung parenchyma, airways, and vessels of COPD patients have increased T-lymphocytes with a blunted memory CD4 T cell response and a more invasive SARS-CoV-2 infection pattern and may underlie the higher death toll observed with COVID-19.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Humans , Lung/metabolism , Proteomics , Pulmonary Disease, Chronic Obstructive/metabolism , SARS-CoV-2
2.
Front Immunol ; 12: 659018, 2021.
Article in English | MEDLINE | ID: covidwho-1236672

ABSTRACT

Information on the immunopathobiology of coronavirus disease 2019 (COVID-19) is rapidly increasing; however, there remains a need to identify immune features predictive of fatal outcome. This large-scale study characterized immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection using multidimensional flow cytometry, with the aim of identifying high-risk immune biomarkers. Holistic and unbiased analyses of 17 immune cell-types were conducted on 1,075 peripheral blood samples obtained from 868 COVID-19 patients and on samples from 24 patients presenting with non-SARS-CoV-2 infections and 36 healthy donors. Immune profiles of COVID-19 patients were significantly different from those of age-matched healthy donors but generally similar to those of patients with non-SARS-CoV-2 infections. Unsupervised clustering analysis revealed three immunotypes during SARS-CoV-2 infection; immunotype 1 (14% of patients) was characterized by significantly lower percentages of all immune cell-types except neutrophils and circulating plasma cells, and was significantly associated with severe disease. Reduced B-cell percentage was most strongly associated with risk of death. On multivariate analysis incorporating age and comorbidities, B-cell and non-classical monocyte percentages were independent prognostic factors for survival in training (n=513) and validation (n=355) cohorts. Therefore, reduced percentages of B-cells and non-classical monocytes are high-risk immune biomarkers for risk-stratification of COVID-19 patients.


Subject(s)
COVID-19/immunology , COVID-19/mortality , Adaptive Immunity , Adult , Aged , Aged, 80 and over , B-Lymphocytes/immunology , Biomarkers , COVID-19/pathology , Female , Humans , Immunity, Innate , Lymphopenia/immunology , Lymphopenia/mortality , Lymphopenia/pathology , Male , Middle Aged , Monocytes/immunology , Prognosis , SARS-CoV-2 , Survival Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL